Our Lady of the Assumption Catholic Primary School

Power Maths calculation policy, Year 2

The following pages show the Power Maths progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.
Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to

 connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s , to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with 15-3 and 15-13, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.
In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2. We show the column method in Year 2 as an option; teachers may not wish to include it until Year 3.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2s, 5s and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.
They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations. Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Year 2			
	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10s and 1s. Bundle straws to understand unitising of 10s.	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals.
Adding 10s	Use known bonds and unitising to add 10s. I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1s. 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.	Add the 1s. Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. This can be represented horizontally or vertically. $34+5=39$ or
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. There are 4 tens and 5 ones.	Complete a 10 using number bonds.	Complete a 10 using number bonds. $7=5+2$

	I need to add 7 ．I will use 5 to complete a 10 ，then add 2 more．		$45+5+2=52$
Adding a 1－digit number to a 2－digit number using exchange	Exchange 10 ones for 1 ten．	Exchange 10 ones for 1 ten．	Exchange 10 ones for 1 ten．
Adding a multiple of 10 to a 2－digit number	Add the 10 s and then recombine． 27 is 2 tens and 7 ones． 50 is 5 tens． There are 7 tens in total and 7 ones． So， $27+50$ is 7 tens and 7 ones．	Add the 10s and then recombine． 66 is 6 tens and 6 ones． $66+10=76$	Add the 10s and then recombine． $\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$

		A 100 square can support this understanding.	
Adding a multiple of 10 to a 2-digit number using columns	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10s and 1s separately.	Add the 10s and 1s separately. Use a part-whole model to support.	Add the 10s and the 1 s separately, bridging 10s where required. A number line can support the calculations.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	$5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	$\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	$17+25$
Adding two 2-digit numbers using a place value grid	Add the 1s. Then add the 10s.		Add the 1s. Then add the 10s.
Adding two 2-digit numbers with exchange	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10s.

			$\begin{array}{r\|c\|} \mathrm{T} & \mathrm{O} \\ \hline 3 & 6 \\ +2 & 9 \\ \hline & 5 \\ \hline \end{array}$ $+\begin{array}{\|l\|l} \hline T & 0 \\ \hline 3 & 6 \\ 2 & 9 \\ \hline 6 & 5 \\ \hline & 1 \end{array}$
Year 2 Subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\otimes \otimes \not \otimes \not \subset \otimes \not \subset \not \subset \not \subset$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the 1 s . This may be done in or out of a place value grid.	Subtract the 1 s . This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds.

			$\begin{array}{rc} \mathrm{T} \quad 0 \\ \hline 3 & \\ -\quad 3 \\ \hline 3 & 6 \\ \hline & \\ & \\ & 39-3=6=36 \end{array}$
Subtracting a single－digit number bridging 10	Bridge 10 by using known bonds． $35-6$ I took away 5 counters，then 1 more．	Bridge 10 by using known bonds． $35-6$ First，I will subtract 5 ，then 1.	Bridge 10 by using known bonds． $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting a single－digit number using exchange	Exchange 1 ten for 10 ones．This may be done in or out of a place value grid．	Exchange 1 ten for 10 ones．	Exchange 1 ten for 10 ones．

Power Maths © Pearson 2019
Copying permitted for purchasing institution only．This material is not copyright free．Pearson is not responsible for the quality，accuracy or fitness for purpose of the materials contained in the Word files once edited．

			25-7=18
Subtracting a 2-digit number	Subtract by taking away. 0000000000 0000000000 0000000000 0000000000 $\bigcirc 00 \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ \varnothing 61-18 I took away 1 ten and 8 ones.	Subtract the 10s and the 1s. This can be represented on a 100 square.	Subtract the 10 s and the 1 s . This can be represented on a number line. $64-41=?$ $\begin{aligned} & 64-1=63 \\ & 63-40=23 \\ & 64-41=23 \end{aligned}$ $\begin{aligned} & 46-20=26 \\ & 26-5=21 \\ & 46-25=21 \end{aligned}$
Subtracting a 2-digit number using place value and columns	Subtract the 1s. Then subtract the 10s. This may be done in or out of a place value grid. $38-16=22$	Subtract the 1 s . Then subtract the 10 s .	Using column subtraction, subtract the 1 s . Then subtract the 10 s . $\begin{array}{r}T 0 \\ \hline 405 \\ -102 \\ \hline 3 \\ \hline\end{array}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. $5 \times 5=25$
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Learning $\times 2$, $\times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	Understand how the times-tables increase and contain patterns.

Power Maths calculation policy

	3 groups of 10 ... 10, 20, 30 $3 \times 10=30$		
Year 2 Division			

Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3. They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. $18 \div 2=9$
Grouping equally	Understand how to make equal groups from a whole.	Understand the relationship between grouping and the division statements.	Understand how to relate division by grouping to repeated subtraction.

U divided into 4 equal groups.
There are 2 in each group.
times-tables to
solve divisions

Power Maths calculation policy

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for
the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

